The Redox Code

نویسندگان

  • Dean P. Jones
  • Helmut Sies
چکیده

SIGNIFICANCE The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. RECENT ADVANCES Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. CRITICAL ISSUES Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. FUTURE DIRECTIONS Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Electrochemistry of Polyphenol Oxidase

The electrochemistry of banana tissues on a carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) is presented. Cyclic voltammetry is applied to investigate the direct electrochemistry of banana tissues i.e. a source of polyphenol oxidase (PPO). A redox couple with an anodic and counterpart cathodic peak is obtained. The influence of various parameters such as pH,...

متن کامل

Computational and electrochemical studies on the redox reaction of 2-(2,3-dihydroxy phenyl)-1,3- dithiane in aqueous solution

Electrode potential of 2-(2,3-dihydroxy phenyl)-1,3-dithiane (DPD) was investigated by means of cyclic voltammetry (CV) at various potential scan rates. The calculated value was compared with the experimental value obtained by cyclic voltammetry (CV). All experiments were done in aqueous phosphate buffer solutions at different pHs. The experimental redox potential of DPD was obtained to be 0.75...

متن کامل

The Effect of Coinage Transition Metal (Cu, Ag, Au) Substitutions on Two-electron Redox Potential of Quinones

Quinones are a class of compounds which have widespread importance in chemistry, biology and medicine. Because of their appropriate performance in electron transferring rate, quinones are among the most applicable mediators in biosensors. Recently, the effects of different non-metal substitutions on redox potential of quinone have been investigated to design suitable mediators for different ele...

متن کامل

How to Change the Redox Potential of Guanine?

Due to some important applications of guanine electrode in scientific and technology research such as electro-chemical DNA based biosensors, and a problem of high redox potential of guanine (0.81 V), our research study concentrates on reducing guanine redox potential by substituting Cu, Ag, Au, CH3, C2H5 and Cl on sites of 1, 2 and 9 of guanine. A 5.0% reduction...

متن کامل

A Numerical Simulation of Vanadium Redox Flow Batteries

The recent penetration of renewable sources in the energy system caused a transformation of the needs of the distribution system and amplified the need of energy storage systems to properly balance the electricity grid. Among electrochemical energy storage devices, all vanadium flow batteries are those of the most promising technologies due to their high efficiency, long lifetime, reliability a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2015